

ESTIMATIONS OF FOREST BIOMASS, CARBON POOLS DISTRIBUTION AND NET PRIMARY PRODUCTION OF A MOIST **TROPICAL FOREST**

Adrien N. Djomo^{1,*}, Alexander Knohl¹, Gode Gravenhorst²

¹Department of Geography, Queen's University, Kingston, Canada.

¹Faculty of Forest Sciences and Forest Ecology, Buesgen-Institute, Chair of Bioclimatology, University of Göttingen, Germany.

² Centre for Tropical and Subtropical Agriculture and Forestry (CeTSAF), University of Göttingen, Germany. Email: *djomoa@queensu.ca

INTRODUCTION

With increasing CO2 in the atmosphere, there is an urgent need of reliable biomass estimates and carbon pools in tropical forests, most especially in Africa where there is a serious lack of data. Information on net primary production (NPP) resulting from direct biomass field measurements is crucial in this context, to know how forest ecosystems will be affected by climate change and also to calibrate eddy covariance measurements.

STUDY SITE

Fig. 1. Vegetation map of Campo-ma'an, 24 nested plots of 20 m \times 250 m (•), one 100 m × 100 m plot (=) and different land uses (NP, MF, AF, P). NP: National Park; MF: Managed forests; Agro forests, P: AF: Industrial Plantations. For description of the different vegetation units, confer to text. (Source: Adapted Tchouto et al. 2009).

METHODS

Biomass data were collected from 25 plots of 13 ha spread over the different vegetation types and land uses of a moist evergreen forest of 772 066 ha in Cameroon (Fig.1).

>3 soil samples were collected at each layer (0 cm to 15 cm and 15 cm to 30 cm) with a cylinder of 5 cm of diameter and 5 cm of length. The collection was done 25 m from the centre of each plot.

>With site-specific allometric equations, we estimated biomass and aboveground and belowground carbon pools.

>We used GIS technology to develop a carbon biomass map of our study area (Fig 4).

>The NPP was estimated using the growth rates obtained from tree ring analysis.

Fig. 2. Picture of Terminalia Superba, a tree of our study site showing annual growth rings.

RESULTS

Fig. 3. Biomass distribution (Mg ha-1) per diameter class using 7 different allometric equations.

RESULTS Contd..

Table 1: Carbon Net Primary Productivity (carbon uptake, kg ha⁻¹ year⁻¹) distribution in the various land uses and strata of Campo Ma'an forest.

Location	Agro	Managed	National	Average
	forests	forests	Park	ecosystem
1. Overstorey C uptake (Dbh ≥ 10 cm)				
Caesalpeasa	2127±727	2232±771	2521±870	2293±782
Cosaca	2429±835	-	-	2429±835
Caesalp	2065±719	1556±540	2032±694	1958±667
Mixevegreen	1267±452	-	1581±546	1476±508
Swamp forest	1216±429	$2386{\pm}821$	-	1996±685
Mixsemidec	1159±414	1838±628	-	1668±570
Average C uptake	1852±631	2038±694	2041±695	1977±672
2. Understorey C uptake (5 ≤ Dbh < 10 cm)				
	206±71	219±75	266±91	231±78
3. Belowground C uptake (fine and coarse roots)				
Caesalpeasa	568±172	554±181	649±205	590±185
Cosaca	608±197	-	-	608±197
Caesalp	544±170	411±128	542±165	521±158
Mixevegreen	346±108	-	435±130	406±121
Swamp forest	322±102	657±196	-	545±163
Mixsemidec	307±98	470±148	-	429±135
Average Belowground C	uptake			
	484±149	530±164	542±165	519±159
Total NPP	2542±652	2787±717	2849±720	2727±695

Fig. 4. Above and belowground carbon pools distribution in Campo-Ma'an (2009). The soil organic carbon (SOC) is measured up to 30 cm.

provides not only

to

methodology

estimate these components and the

DISCUSSIONS

•Biomass, carbon and NPP estimations are always linked with uncertainties and it is important to consider and minimize them as much as possible.

•The potential sources of errors were: field measurements, environmental and physical factors, allometric equations selected and the log-transformation used, estimation of carbon content in woods. Our carbon biomass was estimated with an average error of 18% and NPP with 25%

CONCLUSION

Fig. 5. Total aboveground carbon pools (Mg ha-1) in the three land uses (AF, MF, NP) and two vegetation types of Campo-Ma'an forest.

related uncertainty.

appropriate

Acknowledgements We thank the field assistant crew for their endeavour throughout this study. We extend our thanks to Katherine Korus who helped on GIS design of biomass map. Our thanks are extended to researchers of the Institute of Tropical Silviculture and Forest Ecology of Georg-August University. Gottingen for their valuable comments on sampling design and methodology. This study was carried out under the WWF grant WWFCCPO/kZ/GRANT/FY09/020TNM/GAN/nep.